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Abstract

We present a flexible, general-purpose technique for generating time se-
ries classifiers. These classifiers are two-stage algorithms; each consists
of a set of feature extraction programs, used for transforming the time
series into a vector of descriptive scalar features, and a back-end clas-
sifier (such as a support vector machine) which uses these features to
predict a label. We use grammars to constrain the set of valid feature ex-
traction programs and to provide a mechanism for incorporating domain
expertise. We test our algorithm on a variety of problems, and compare
its performance against conventional classifiers such as a Support Vector
Machine (SVM) and Fisher Linear Discriminant (FLD).

1 Feature Extraction

Feature extraction is a process for generating numerical descriptions of data instances. The
task of choosing appropriate features is notoriously domain-specific. Automated tech-
niques for feature extraction exist but they often fall short of what a domain expert can
suggest. A manual approach involves identifying physical characteristics and deriving
mathematical expressions to generate numerical measures to describe them. In practice, the
manual design of feature extractors is an incremental and often tedious process. Features
are added or removed or in other ways tweaked until the desired performance is achieved.
This can consume significant time and resources. Our aim is to enable the expert to give
advice to the automated feature extractor, but for the computer to do all the grunt work.
Grammars provide a mechanism for incorporating domain knowledge at whatever level of
detail is available, and providing a framework within which the automated feature extractor
can search for pertinent features.

1.1 Automated Feature Extraction

An automated approach to feature extraction using Genetic Programming (GP) was used
by Harvey et al.[6] to classify pixels in multispectral images. They used GP to evolve
feature extraction algorithms composed of primitive image processing operators (e.g. edge
detectors, texture energy, morphological operations, etc.). The images produced by these
algorithms were fed into a pixel-by-pixel linear classifier. The extracted features incorpo-
rated spatial information for each pixel to augment its spectral profile.

Previously, we developed a machine learning algorithm we called ZEUS for generating



Figure 1: A ZEUS solution is a time series classifier. It consists of a set of feature extractors
(the dashed box), and a back-end classifier (the dashed circle). When applied to a time
series, the time series is fed into each individual feature extractor (labeled FE), and each
produces at least one numerical descriptor of the input signal. These features are then fed
into a back-end classifier and a predicted label (Y) results.

feature extractors for time series classification [3, 4]. We evaluated its performance on a
FORTE lightning classification task. We have since extended our approach to incorporate
the use of grammars to guide the extraction of a richer and more systematic set of features
for classification.

As Figure 1 illustrates, a solution consists of two parts: a set of feature extractors (programs
composed of primitive signal processing operators) which generate scalar features from the
training data, and a back-end classifier which combines these features to predict a label.
ZEUS iteratively refines its classifier until a stopping condition is met. Upon completion,
ZEUS provides a classifier to categorize new data of the same form as the input data.

1.2 Human-Readable Code

The classifier (or regressor) that ZEUS produces takes the form of MATLAB code that can
be integrated into a user’s standalone application. The first part of this code is a set of MAT-
LAB expressions for extracting features from the time series data. The second part takes
these features and classifies them with a back-end classifier such as a linear discriminant.
Human-readable algorithms provide insight into the physical and descriptive characteristics
of time series, and permit an expert to more easily incorporate domain knowledge.

1.3 Dimensionality Reduction

Extracting a set of scalar features from time series also serves the purpose of reducing
the dimensionality of the data. In our experiments, it was not uncommon to attain decent
performance with only 5 scalar features generated from time series consisting of thousands
of values. This is useful when computing a Fisher Linear Discriminant as it is significantly
cheaper to compute a covariance matrix for a lower dimensional data set. Since SVMs can
handle high dimensional spaces very well, the benefits of dimensionality reduction are less
clear. However, the benefits of feature extraction are realized with SVMs; e.g. ZEUS can
produce feature extractors which are invariant to offset shifts.



Table 1: Parameters

NAME DEFAULT DESCRIPTION

init f 15 INITIAL NUMBER OF FEATURES
min f,max f 5,35 MINIMUM, MAXIMUM NUMBER OF FEATURES
iter 1000 NUMBER OF HILL-CLIMBING ITERATIONS.
des f NONE DESIRED FITNESS (STOPPING CONDITION)
backend svm BACK-END CLASSIFIER
C 1000 SVM ERROR PENALTY
rr 0.1 RIDGE REGULARIZATION COEFFICIENT, �
grmfile NONE FILE CONTAINING THE GRAMMAR

2 General Algorithm

The objective of ZEUS is to find a good solution for a given time series classification prob-
lem. In contrast to ordinary GP which evolves a population of solutions, ZEUS only main-
tains a single solution, which consists of a set of feature extractors and a linear backend.

The user provides ZEUS with choices for parameters (see Table 1) and a training set. At the
start of learning, an initial set � of size init f is randomly generated using the specified
grammar.

For each iteration, ZEUS may add, remove, or mutate any of the feature extractors in � ;
each decision and feature extractor has an equal probability of being chosen. (Features are
not added or removed if that would lead to fewer than min f or more than max f features).
After a change is made, a back-end classifier (specified by backend) is trained with the
new set of features. ZEUS is a random mutation hill-climber [5] – the new feature set is kept
if it results in an increase in classification accuracy, or a negligible change in accuracy but
a decrease in the time to run � . This serves two purposes: first, less complex solutions are
less likely to overfit [8], and second, it provides a mechanism for escaping local minima.
This loop continues for either iters iterations, or until a classification accuracy of des f
is attained.

2.1 Back-end Classifier

The back-end classifier applies a linear discriminant to the set � of extracted features. To
classify an instance ������� , we project it onto a hyperplane and threshold to give us a pre-
dicted label 	
�� ��
�� sign ����� ������
�� ����� �!� � . The find the weight vector � , we employ
either a Fisher Linear Discriminant (FLD) or a Support Vector Machine (SVM). The FLD
is based on maximizing the ratio of between-class variance and within-class variance [2];
to guard against overfitting, we employ ridge regularization on the within-class covariance
[7]. The SVM uses a linear hinge loss function with a quadratic normalization [1]; we use
the implementation by Ma et al [11].

All input patterns are normalized to have unit magnitude ( � �" � " � �
) before training or

applying an SVM model. The features are scaled to have zero mean and unit variance.

To train a multi-class model of # classes with labels
� �%$&�('!'('�� # , the problem is broken up

into # �)�
binary classification problems: class

$
against all others, class * against all

others, etc. This gives us # �+�
weight vectors ��, � �.- �('('!'(� �0/ and biases � , � � - �!'('!'(� � / .

The decision value of 1 th discriminant for a given pattern �2�3�4� is given by thresholding
its projection, 5 � � � 16
4� � �" ���7� " ' (1)

To classify an instance � , we assign the label that corresponds to the highest decision value



Table 2: Primitive operators. Some take numeric parameters that are not shown.

OPERATOR DESCRIPTION

auto corr CROSS-CORRELATION OF THE SIGNAL WITH ITSELF
bounds DEFINES WINDOW SPEC. GIVEN LOWER & UPPER BOUND
define window DEFINES WINDOW SPEC. GIVEN CENTER AND WIDTH
grab window RETURN A WINDOW OF A SIGNAL GIVEN A WINDOW SPEC.
smooth SMOOTHS A SIGNAL USING A MEAN FILTER
shift SHIFTS A WINDOW SPECIFICATION TO THE LEFT OR RIGHT
minimum index INDEX OF THE MINIMUM VALUE
maximum index INDEX OF THE MAXIMUM VALUE
minimum, maximum MINIMUM, MAXIMUM VALUE OF A SIGNAL
mean, median MEAN, MEDIAN VALUE OF A SIGNAL
stddev, variance STANDARD DEVIATION, VARIANCE OF A SIGNAL
skewness, kurtosis SKEWNESS, KURTOSIS OF A SIGNAL
derivative, integrate APPROXIMATES THE DERIVATIVE, INTEGRAL OF A SIGNAL
cross INDEX WHERE THE SIGNAL CROSSES A VALUE (E.G. MEAN)
se line RETURNS A LINE STRUCTURING ELEMENT
erode, dilate, open, close STANDARD MORPHOLOGICAL OPERATORS

if it is positive, and 1 if all tests fail; thus, we have the predicted label

	
�� ��
4�
���������	��
 / "
� , 5 � � � 1 
 ����
 / "�� , 5 � � � 16
�����

otherwise

'
(2)

3 Grammars

What operators help classify time series? The answer to this question depends on the
problem at hand. A human who is familiar with the problem could help in this regard.

If it is unclear what operators should be excluded from the pool at the start of learning, one
approach is the shotgun approach; i.e., simply provide ZEUS with a rich and diverse set of
operators. Unfortunately, this poses another problem: the more operators that are available
to ZEUS, the larger the search space, and the greater potential for garbage solutions. The
advantage of using grammars is that they enable one to constrain the space and incorporate
domain knowledge into the automated search for a feature extractor.

The use of grammars to constrain Genetic Programming, a field that has since adopted the
name Grammatical Evolution (GE), was considered by Ryan et al [17]. They employed
a context-free grammar to define the set of valid programs for which the genetic program
could generate. Before the introduction of grammars, GP was largely restricted to lan-
guages, such as LISP, whose syntax could not be violated by applying GP operators to its
programs. GE has been successfully used on a number of problems [15, 18, 19].

In previous work, a Strongly-Typed-GP system proposed by Montana et al.[13] was used
to ensure the validity of programs [3, 4]. This posed two problems. First, it was difficult
to visualize the possible structures of candidate algorithms because they were defined by a
flat set of operator prototypes. A grammar addresses this problem by providing hierarchical
syntax for which to express algorithm structures. Second, the data type matching approach
did not permit one to constrain the set of candidate solutions beyond that achieved by
ensuring type validity. For example, programs were produced which would grab a window
centered at a peak in a signal and then grab another window within that window. Our
grammar prevents this from happening. In this way, grammars enable the user to remove
program parts from the set of all possible program parts which are valid but are not likely



to be useful.

3.1 Motivation

Grammars can help speed up the learning process. This is achieved by restricting the
solution space to programs that obey a grammar. Similar to how the English grammar rules
define how a valid sentence is formed so that a comprehensible idea, however unusual, is
conveyed, a ZEUS grammar defines the general flow of a well-formed feature extraction
program.

Grammars express a language, that is, a set of strings. Grammars are most commonly
used for parsing; however, in our study, we use them exclusively to generate programs.
More specifically, grammars in ZEUS generate strings that can be evaluated in a MAT-
LAB environment. The format of our grammar files is very similar to Backus Naur Form
(BNF) notation commonly used in computation theory. In our grammars, the right-hand
side (RHS) of a production rule is a parenthetical expression; the parenthesis govern the
structure of the tree to be generated, or more simply, the placement of parenthesis in a
MATLAB expression.

References to a primitive operator (i.e., a MATLAB function) begin with a lowercase letter
and references to productions are capitalized. An expression *(a:s:b), when expanded,
where a and b are numbers, generates a random number � between � and � (exclusive) such
that ����� ��� � . Note that *(a:b) is equivalent to *(a:1:b). To expand an expression
of the form *

�
a1, a2, ..., an � , where ai is a fixed constant, one of the constants

is chosen at random.

TimeProc(X) ::= TimeProc(Fourier(X)) | autocorr(X) | ...;
RandNum ::= 0:10ˆ-12:1;
RandFFTPoint ::= *{64, 128, 256, 512};
Fourier(X) ::= ifft(FourierProc(fft(X, PT = RandFFTPoint()), PT));
FourierProc(X, Y) ::= lowpass(X, *(1:Y/2)) | highpass(X, *(1:Y/2))

| bandpass(X, *(1:Y/2), *(1:Y/2));

Figure 2: An example of a grammar for generating part of an algorithm for filtering a signal.
Note that in practice this grammar would be part of a much larger grammar. The Fourier
production is context-sensitive; i.e., a production is situated between the terminals fft
and ifft. The grammar also stipulates that time domain operators are to be used once an
Inverse Fast Fourier Transform is performed.

3.1.1 Example 1: Context-Sensitivity

If we wish produce a program which can apply a Fast Fourier Transform (FFT) to a signal,
we can use a grammar to ensure that only operators that work in the Fourier domain are
applied to the result of an FFT. The grammar in Figure 2 does this. The Fourier produc-
tion is context-sensitive, i.e., FourierProc, is situated between the terminals ifft and
fft. This means that the part of the program that is expanded between these two terminals
is restricted to the rules that apply in that context. More specifically, only the band-math
operators lowpass, highpass, and bandpass can be used after fft and before ifft
are performed.

3.1.2 Example 2: Data Fusion and Segmentation

The grammar shown in Figure 3 is used to generate a feature extractor. When extracting
features from signals, often a statistic is computed over only part of a signal; this enables
us to compute local features. Choosing this part is called segmentation. The grammar



Feature ::= mean(GrabWindow(GetData(’Signal’, *1:@num_signals)))
: {if=@signal_available, prob=0.8}

| mean_image(GetData(’Image’, *1:@num_images))
: {if=@image_available};

GrabWindow(X) ::= window(MeaningfulIndex(X), RandNum())
| shift(window(MeaningfulIndex(X), MeaningfulIndex(X),

RandNum()), *(-@size/3):(@size/3));
MeaningfulIndex(X) ::= @user_index(*1:size(@user_index))

: {if=defined(@user_index)}
| maximum_peak(X) | ...;

Figure 3: A simple grammar for producing a feature extractor. The if statement shown
after a production rule is use to impose a condition. If false, the rule cannot be chosen for
expansion. The @ symbol indicates a global variable. These variables are set when data is
loaded into the ZEUS system. The GrabWindow production extracts part of a signal based
on a location. This location is provided by MeaningfulIndex. This index can be one
provided by the user or one based on a feature of the data, e.g. maximum peak.

stipulates that when segmenting, a window is grabbed at some location. This location could
be provided by the user, or it could be based on some feature of the data. The window can
be centered at that location, or the bounds of the window could be specified by two indices.
Optionally, once the window is defined, it could be shifted to the left or right. This way, we
can capture the part of the signal that occurs before some location.

It is not uncommon for remote sensing devices to collect data in a variety of formats (e.g.
signals, images, trigger locations, trigger times, images, geographic locations). A tool
that performs data fusion knows how to parse through these data in different formats, and
combine them in some sensible, legal way so that all available data are used, and learning
is not restricted to one domain. We can use a grammar to achieve this kind of data fusion.

Figure 3 shows a simple example of data fusion in action. It can extract features from
images and signals. Note the use of if after several production rules. The production rule
can only be expanded if the if condition is true. In this case, we can only extract a feature
from an image or a signal if the user has provided such data. If an image is not available,
the second production rule of Feature cannot be chosen for expansion.

The user can provide one or more time indices for each signal by setting a global
variable in MATLAB called user index. If this is done, the first production rule
MeaningfulIndex can be expanded. If expanded, an index is chosen at random. If
the user has provided two indices for each signal, e.g. the location of the smallest and
largest peak, only one of them will be chosen in the expansion.

4 Experiments

We used seven data sets altogether. Three of them (GUN, TRACE, and SYNTHETIC CON-
TROL) were obtained from the UCR Time Series Data Mining Archive [9]. Three data
sets (FORTE-2, FORTE-6, and FORTE-7) are from a satellite used to measure the RF
radiation emitted from lightning strikes [14]. These time series are labeled according to
the kind of lightning: FORTE-2 is labeled only according to intra-cloud versus cloud-
to-ground; FORTE-6 is the same data with more specific labels; and FORTE-7 includes
some data from an “outlier” class. Finally, the EDOTX-SYN data contains simulated
lightning pulses from a ground sensor. The last four data sets and grammar file are available
at the author’s website: http://nis-www.lanl.gov/ � eads/nips05-data. For
consistency, the same generic grammar file was used for all experiments with ZEUS.

For each data set, we performed five experiments. The first two involve coupling ZEUS
with either FLD or a linear SVM as the back-end classifier. We only used a linear classifier



Table 3: Experimental setup for each data set. There are # classes and � time series records
in each data set. Each of these records consists of

5
data points per channel, and

�
channels.

EXPERIMENTAL SETUP
DATA SET

� � � �
TESTING/VALIDATION

GUN 2 200 150 1 10-FOLD C.V.
TRACE 4 200 200 1 10-FOLD C.V.
SYN. CONTROL 6 600 60 1 10-FOLD C.V.
FORTE -2 2 121 3811 1 10-FOLD C.V.
FORTE -6 6 121 3811 1 10-FOLD C.V.
FORTE -7 7 143 3811 1 10-FOLD C.V.
EDOTX-SYN 2 2000 2000 1 18000

Table 4: Results. The first two major columns report the error obtained when coupling
a conventional classifier is and is not coupled with ZEUS. The best external baseline is
reported if available. For the DTW baselines, leave-one-out cross-validation was used.

ERROR WITH ZEUS ERROR WITHOUT ZEUS BASELINE
DATA SET FLD LSVM FLD LSVM SVM+RBF RESULT METHOD

GUN 1.5 2.5 9.5 5.5 5.5 1 DTW [16]
TRACE 0 0.5 28.5 8 17.5 0 DTW [16]
SYN. CONTROL 2 2.17 25.17 4 3.3 0.33 DTW [16]
FORTE -2 13.22 20.66 40.5 30.58 28.93
FORTE -6 21.49 28.1 50.41 40.50 38.02
FORTE -7 25.87 28.67 54.54 34.97 37.06 21.52 MSNFE [10]

29.57 KFFE [10]
EDOTX-SYN 4.43 3.67 32.39 3.98 4.69

backend for ZEUS because of the value of its lack of complexity as well as its decent
performance on the data sets we tried. A linear SVM, SVM with a Radial Basis Function
(RBF) kernel, and a FLD are trained on the raw data for the last three experiments. For
each experiment, a regularization coefficient is adjusted through 10-fold cross-validation.
When FLD is used, the ridge regularization coefficient � takes on the values defined by
the set

��� ��� "	� 10� ��
&�	� � * � $&�!� � � . For an SVM, the set of error penalties tried is defined
by the set

��� � "	� 1�� � ��� � � �(� �%$&� * � � . The lowest cross-validation error is reported for
each experiment and data set except for EDOTX-SYN. In this case, we retrain with the
regularization parameter that leads to the lowest validation error, and apply it to a test set
consisting of

��
 � ��� � instances and then report the test error. When training an SVM with
an RBF kernel, we set gamma to the standard deviation of the entire training set.

The YALE system uses genetic programming to generate feature extraction programs for
time series classification [12]. The operator pool by YALE includes operators which, per-
form transformations into, and operate in, phase space. In future work, we would like to
incorporate these operators into ZEUS and use grammars to define how they are used.

5 Conclusion

Grammars provide an intuitive and hierarchical framework for incorporating domain
knowledge into an automated search for feature extractors. They also can explore the use
of a larger set of operators while mitigating the cost of an increase in search space size.
We tested our algorithm against conventional classifiers on seven data sets to demonstrate
its performance. Our algorithm outperformed the conventional classifiers trained on the



raw data. The use of grammar-guided hill climbing for feature extraction has potentially
two powerful benefits: it is generic to a wide variety of problem domains (e.g. computer
vision, robotics, time series forecasting), and second, it enables the user to input domain
knowledge, if available, to assist the learning algorithm in its search. Efforts are underway
to show these effects more clearly by comparing results obtained with different grammars.
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